

PRODUÇÃO DE AMOSTRAS DE AMIDO CATIÔNICO E REALIZAÇÃO DE TESTES DE FLOCULAÇÃO

José Carlos Trindade Filho. IC-Fecilcam, Engenharia de Produção Agroindustrial, Fecilcam, <u>jctf_epa@hotmail.com</u>

Me. Nabi Assad Filho (OR), Fecilcam, <u>nadiassad@uol.com.br</u>

1. Introdução

Amido é o material amiláceo obtido através de moagem de tubérculos ou de outra fonte vegetal, e a origem do termo vêm da palavra Greco-latina "amylum" que justamente quer dizer material farináceo (CIACCO et al., 1982)

Muitos países usam apenas o termo amido para se referir a produtos amiláceos, que são obtidos de fontes vegetais No Brasil há duas nomenclaturas referentes a produtos amiláceos: amido – fração amilácea em órgãos aéreos como grãos e frutas – e fécula, que se refere à fração amilácea de órgãos subterrâneos como raízes e tubérculos. Não há diferenciação química, mas na origem do produto e em propriedades funcionais e tecnológicas. (CEREDA, 2003)

O mercado de amido vem crescendo e se aperfeiçoando, levando ao aumento de produtos que visam atender a exigências especificas. De acordo com Vilpoux (1998), a produção de amidos modificados é uma alternativa que vem sendo desenvolvida há certo tempo e que a possibilidade de se introduzir novas matérias-primas amiláceas como fonte de amido com características interessantes industrialmente desperta interesse de industriais da área.

Um dos amidos modificados com bastante utilização industrial, principalmente na indústria de papel é o catiônico. Ele é derivado de amido com reagentes que possuem radicais imina, amina, amônio, sulfona e fosfônio, todos com cargas positivas. (MOORTHY, 2000 apud CEREDA, 2003).

Os amidos catiônicos quando utilizados em fábricas de papel, aumentam a resistência do produto por melhorar a resistência das ligações por unidade de área da folha, mais do que a área relativa (HOWARD et al., 1989 apud CEREDA, 2003)

Umas das principais características do amido catiônico é a de ser atraído por partículas ou superfícies de cargas opostas (materiais aniônicos) (SWINKELS, 1996 apud CEREDA, 2003). Isto é de extrema importância no auxilio da floculação de partículas em suspensão na água, ajudando na aglomeração e compactação de matéria que acaba por formar conjuntos maiores denominados "flocos", que por serem maiores e mais densos são

fáceis de sedimentar. Isso contribui na melhor clarificação na água que está sendo clarificada.

Este trabalho objetivou-se em analisar amostras feitas de amido catiônico e seu potencial como agente catalisador, o que é de extrema importância para quem busca produto de qualidade e que possa proporcionar o que se espera dele.

As amostras foram produzidas em escala laboratorial sendo analisado todo o processo produtivo. Os testes realizados tiveram como objetivo verificar o potencial de floculação de cada uma delas e comparar ao que se encontra no mercado.

A comparação entre as amostras possibilita verificar qual apresenta melhor resultado e auxilia na escolha do amido a ser utilizado, dependendo da finalidade desejada.

Como a maior utilização do amido catiônico é na indústria de papel, os testes foram realizados utilizando resíduos de celulose. Apesar destes testes estarem focados na indústria papeleira, nada impede a utilização deste amido em outros ramos industriais.

2. Materiais e Métodos

Inicialmente foi necessário efetuar uma pesquisa bibliográfica, em apostilas disponibilizadas pelo orientador e também usando sites como fonte de informação. Isto foi essencial na escolha da maneira de produção de amido, além de obter conhecimento acerca das utilizações do amido catiônico.

A etapa seguinte foi realizada em laboratório. Foram testadas maneiras de se obter o amido catiônico, analisando as circunstâncias e variáveis envolvidas no processo estudado. O amido obtido foi feito a partir da fécula da mandioca e todo o material utilizado estava disponível no laboratório, exceto o agitador e o medidor de pH. Estes dois equipamentos foram obtidos durante o processo de pesquisa e utilizados somente na produção da última amostra de amido.

A escolha pela fécula de mandioca deu-se devido à fácil obtenção, sendo fornecida pelo orientador deste artigo. A princípio cogitou-se adquirir a raiz e começar o processo a partir da extração da fécula. Para agilizar a produção do amido modificado e realização dos testes, foi escolhido obter diretamente a fécula.

Após a obtenção da fécula, foram produzidas três amostras de amido catiônico, diferenciadas pelas etapas e formulações envolvidas. As duas primeiras foram produzidas através da reação a fécula de mandioca com cal, quab (quaternário de amônia), NaOH (soda cáustica), água e sulfato de sódio. As duas amostras diferenciaram-se apenas na ordem de adição dos produtos na fécula.

A terceira amostra também foi produzida a partir da fécula da mandioca. Ela diferenciou-se das outras na formulação utilizada. A fécula foi reagida com cal, soda cáustica, quab e ácido clorídrico.

As três passaram por testes para analisar a capacidade de floculação do amido catiônico já que esta é a sua propriedade mais utilizada na indústria. Este teste, juntamente com seu resultado, será detalhado a seguir.

3. Resultados Finais e Discussão

Três amostras de amido catiônico foram produzidas no laboratório. Esse amido é muito utilizado na floculação de partículas em suspensão na água. Por isso foram realizados testes para ver sua capacidade de atrair partículas com cargas opostas (materiais aniônicos), o que ajuda na formação dos flocos.

As três amostras foram aquecidas até atingir a temperatura critica de gelatinização, que era caracterizada pela mudança na cor da solução. Para isso foram colocados 15 gramas de cada amostra em 500 ml de água.

Para Ciacco e Cruz (1982) a gelatinização pode ser entendida como a quebra das pontes de hidrôgenio do amido através do aquecimento de uma solução aquosa deste componente. Esta quebra proporciona a hidratação dos grânulos de amido e seu inchamento. Quando a suspensão atinge uma temperatura crítica, o grânulo começa a intumescer e simultaneamente perde suas características de birrefrigência, indicando alterações na estrutura cristalina. Isto pode ser notado pela mudança de cor da suspensão.

As amostras que foram produzidas com quab, NaOh e sulfato de sódio gelatinizaram a 72°C . A terceira amostra gelatinizou a 80°C.

Utilizando um liquidificador, foi triturada uma porção de papelão em água. Esta solução foi filtrada, e a água escura que escoou foi dividida em 3 porções de 200 ml. Cada uma dessas porções seria destinada ao teste de uma amostra de amido.

3.1. Duas Primeiras Amostras

Ao colocar uma pequena quantidade das amostras na água suja, logo notou-se que começou o processo de floculação dos resíduos presentes.

Apesar das amostras diferirem na viscosidade, mostraram o mesmo comportamento no teste de floculação. Logo após ser colocada parte das amostras nas águas resíduais do trituramento do papelão, houve a formação de flocos, que apresentaram tamanho

considerável. Após um determinado tempo a floculação estagnou-se, e a água tornou-se visivelmente mais límpida do que antes da adição do amido modificado.

3.2. Terceira Amostra

Assim como nas amostras anteriores, um pouco desta foi colocado na água suja para analisar seu potencial de floculação. Comparado aos testes anteriores, o tempo necessário para o início de floculação, neste caso, foi maior. O tamanho dos flocos foi menor do que nas outras amostras. A limpidez após a estagnação do processo foi semelhante.

4. Conclusões

O impacto ambiental gerado pelas indústrias é algo que vem preocupando a sociedade atual. Neste contexto, os resíduos gerados são considerados problemas sérios e que devem ser solucionados.

O tratamento dado a estes resíduos deve ser algo importante para todo ramo industrial. Uma solução encontrada foi a utilização de amidos modificados que proporcionassem a aglomeração desses resíduos e assim facilitar a limpeza da água. O amido catiônico, como já foi apresentado, tem como característica atrair partículas. Isso é bom para o tratamento de águas residuais.

Os testes apresentados foram feitos utilizando-se papelão, levando em conta que a maior utilização dada ao amido catiônico é na indústria de papel. Estes testes foram realizados a fim de analisar três amostras de amido catiônico.

A água obtida após a trituração do papelão apresentou-se muito turva. As três amostras obtiveram bom resultado na reversão deste quadro. Houve variação de tempo na formação dos flocos nas três amostras, mas nos três casos o processo iniciou-se rapidamente. A água não ficou límpida em nenhuma das amostras, o que já era esperado. Em todas elas a limpidez foi semelhante, variando apenas no tamanho dos flocos formados. A seguir pode-se ver os resultados dos testes. Na foto a seguir, as amostras 1 e 2 referemse às duas primeiras amostras produzidas. As amostras 3 e 4 são da última amostra.

Figura 1 – Após 24 horas, a água ficou mais límpida.

O que irá determinar a escolha do amido catiônico a ser utilizado no tratamento da água residual é o que se pretende fazer com os resíduos.

O ramo industrial que mais utiliza o amido catiônico no tratamento de resíduos e até mesmo dentro do processo é o de fabricação de papel. Os resíduos mais frequentemente encontrados na água são celulose - em maior quantidade - e tinta. Seria economicamente viável reaproveitar esta celulose, que inicialmente seria descartada, o que justifica o uso deste amido no fluxo de produção do papel.

Neste caso é mais interessante usar o amido catiônico que proporciona flocos de celulose maior, que seriam melhor reaproveitados.

Ao final do teste, a água não se apresentou totalmente límpida, o que já era esperado. Mas houve grande formação de flocos, que poderiam ser reutilizados em um processo industrial, o que representaria uma economia na aquisição de matéria-prima.

Apesar de a indústria de papel ser a que mais utiliza o amido catiônico, o seu uso não deve se restringir a ela. Cada caso deverá demandar estudo a fim d escolher as características do amido a ser utilizado.

Seu uso também não deve se restringir ao tratamento de resíduos. A capacidade de floculação do amido catiônico é algo que pode ser utilizado em alguma etapa do processo produtivo de algumas indústrias.

As amostras não tiveram resultados piores que os obtidos no teste com uma amostra comprada. A diferença maior estava na apresentação dos produtos. Este aspecto é algo que pode ser melhorado, o que sugere a realização de novas pesquisas visando tal propósito.

5. Referências

CEREDA, M. P. (Coord.) **Agricultura:** tuberosas amiláceas Latino Americanas. São Paulo: Fundação Cargill, 2002. (Série Culturas de Tuberosas Amiláceas Latino Americanas)

VILPOUX, O. Amidos adaptados ao uso nas indústrias de alimentos. Botucatu: Centro de Raízes Tropicais, UNESP, 1998

CIACCO, César Francisco; CRUZ, Renato. **Fabricação de amido e sua utilização.** São Paulo: Secretaria da Indústria, Comércio, Ciência e Tecnologia, 1982

Eco Química. Disponível em: http://ube164.pop.com.br/repositorio-/4488/meusite/processos/coagulacao.htm> Acesso em: 01 de setembro de 2008